FAST SOFT-RECOVERY RECTIFIER DIODES

Silicon double-diffused rectifier diodes in plastic envelopes. They are intended for use in chopper applications as well as in switched-mode power supplies, as efficiency diodes and scan rectifiers in television receivers. The devices feature non-snap-off characteristics. Normal and reverse polarity types are available.

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>BYX71-350(R)</th>
<th>600(R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitive peak reverse voltage</td>
<td>V_{RRM} max.</td>
<td>350</td>
</tr>
<tr>
<td>Average forward current</td>
<td>I_{F(AV)} max.</td>
<td>7</td>
</tr>
<tr>
<td>Non-repetitive peak forward current</td>
<td>I_{FSM} max.</td>
<td>60</td>
</tr>
<tr>
<td>Reverse recovery time</td>
<td>t_{rr} <</td>
<td>450</td>
</tr>
</tbody>
</table>

MECHANICAL DATA (see also page 2)

SOD-38

Dimensions in mm

The exposed metal base-plate is directly connected to tag 1.
MECHANICAL DATA (continued)

Net mass: 2,5 g

Recommended diameter of fixing screw: 3,5 mm

Torque on screw
 when using washer and heatsink compound: min. 0,95 Nm (9,5 kg cm)
 max. 1,5 Nm (15 kg cm)

Accessories:
 supplied with the device: 56355 (washer)
 available on request: 56316 (mica insulating washer)

POLARITY OF CONNECTIONS

<table>
<thead>
<tr>
<th>BYX71-350 and BYX71-600</th>
<th>BYX71-350R and BYX71-600R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base-plate: cathode</td>
<td>anode</td>
</tr>
<tr>
<td>Tag 1: cathode</td>
<td>anode</td>
</tr>
<tr>
<td>Tag 2: anode</td>
<td>cathode</td>
</tr>
</tbody>
</table>
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

<table>
<thead>
<tr>
<th>VOLTAGES</th>
<th>BYX71-350(R)</th>
<th>600(R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous reverse voltage</td>
<td>V_R max. 300</td>
<td>500 V</td>
</tr>
<tr>
<td>Working reverse voltage</td>
<td>V_{RW} max. 300</td>
<td>500 V</td>
</tr>
<tr>
<td>Repetitive peak reverse voltage ($\delta \leq 0.01$)</td>
<td>V_{RRM} max. 350</td>
<td>600 V</td>
</tr>
<tr>
<td>Non-repetitive peak reverse voltage ($t \leq 10$ ms)</td>
<td>V_{RSMM} max. 350</td>
<td>600 V</td>
</tr>
</tbody>
</table>

Currents

Average on-state current assuming zero switching losses

- Square wave: $\delta = 0.5$; up to $T_{mb} = 85^\circ C$ without heatsink at $T_{amb} = 50^\circ C$
- Sinusoidal: at $T_{mb} = 85^\circ C$

<table>
<thead>
<tr>
<th>Average on-state current</th>
<th>I_{F(AV)} max. 7 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without heatsink at $T_{amb} = 50^\circ C$</td>
<td>I_{F(AV)} max. 1.4 A</td>
</tr>
<tr>
<td>Sinusoidal at $T_{mb} = 85^\circ C$</td>
<td>I_{F(AV)} max. 6.5 A</td>
</tr>
</tbody>
</table>

R.M.S. forward current

<table>
<thead>
<tr>
<th>R.M.S. forward current</th>
<th>I_{F(RMS)} max. 10 A</th>
</tr>
</thead>
</table>

Repetitive peak forward current

<table>
<thead>
<tr>
<th>Repetitive peak forward current</th>
<th>I_{F(RM)} max. 25 A</th>
</tr>
</thead>
</table>

Non-repetitive peak forward current

- Half sine wave; $t = 10$ ms; $T_j = 150^\circ C$ prior to surge
- Square pulse; $t = 5$ ms; $T_j = 150^\circ C$ prior to surge

<table>
<thead>
<tr>
<th>Non-repetitive peak forward current</th>
<th>I_{FSM} max. 60 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half sine wave; $t = 10$ ms; $T_j = 150^\circ C$ prior to surge</td>
<td>I_{FSM} max. 60 A</td>
</tr>
<tr>
<td>Square pulse; $t = 5$ ms; $T_j = 150^\circ C$ prior to surge</td>
<td>-$rac{dI}{dt}$ max. 50 A/\mu s</td>
</tr>
</tbody>
</table>

Temperatures

- Storage temperature: $T_{stg} = -55$ to $+125$ °C
- Junction temperature: T_j max. 150 °C

October 1972
THERMAL RESISTANCE

From junction to mounting base

\[R_{th\ j-mb} = 6.5 \, ^\circ\text{C/W} \]
\[Z_{th\ j-mb} = 0.3 \, ^\circ\text{C/W} \]

Transient thermal impedance; \(t = 1 \, \text{ms} \)

Influence of mounting method

1. Heatsink mounted

 From mounting base to heatsink:
 a. with heatsink compound
 b. with heatsink compound and 56316 mica washer
 c. without heatsink compound
 d. without heatsink compound; with 56316 mica washer

\[R_{th\ mb-h} = 1.5 \, ^\circ\text{C/W} \]
\[R_{th\ mb-h} = 2.7 \, ^\circ\text{C/W} \]
\[R_{th\ mb-h} = 2.7 \, ^\circ\text{C/W} \]
\[R_{th\ mb-h} = 5 \, ^\circ\text{C/W} \]

2. Free air operation

The quoted values of \(R_{th\ j-a} \) should be used only when no other leads run to the tie-points.

From junction to ambient in free air mounted on a printed circuit board

at \(a = \text{maximum lead length} \)
and with a copper laminate
a. \(> 1 \, \text{cm}^2 \)
 \[R_{th\ j-a} = 50 \, ^\circ\text{C/W} \]
 \[R_{th\ j-a} = 55 \, ^\circ\text{C/W} \]

at a lead-length \(a = 3 \, \text{mm} \)
and with a copper laminate
b. \(< 1 \, \text{cm}^2 \)
 \[R_{th\ j-a} = 55 \, ^\circ\text{C/W} \]
 \[R_{th\ j-a} = 60 \, ^\circ\text{C/W} \]

October 1972
SOLDERING AND MOUNTING NOTES

1. Soldered joints must be at least 2,5 mm from the seal.

2. The maximum permissible temperature of the soldering iron or bath is 270 °C; contact with the joint must not exceed 3 seconds.

3. The device should not be immersed in oil, and few potting resins are suitable for re-encapsulation. Advice on these materials is available on request.

4. Leads should not be bent less than 2,5 mm from the seal; exert no axial pull when bending.

5. For good thermal contact heatsink compound should be used between base-plate and heatsink.

CHARACTERISTICS

Forward voltage

\[I_F = 5 \, \text{A}; \quad T_j = 25 \, \text{°C} \]

\[V_F < 1,25 \, \text{V} \]

Reverse current

\[V_R = V_{R\text{Wmax}}; \quad T_j = 125 \, \text{°C} \]

\[I_R < 0,4 \, \text{mA} \]

Reverse recovery when switched from

\[I_F = 2 \, \text{A to } V_R = 30 \, \text{V with} \]

\[-\frac{dI_F}{dt} = 20 \, \text{A/µs}; \quad T_j = 25 \, \text{°C} \]

Recovery charge

\[Q_S < 700 \, \text{nC} \]

Recovery time

\[t_{rr} < 450 \, \text{ns} \]

Max. slope of the reverse recovery current

\[|\frac{dI_R}{dt}| < 5 \, \text{A/µs} \]

\[1) \text{Measured under pulse conditions to avoid excessive dissipation.} \]
CHARACTERISTICS (continued)

Forward recovery when switched to

\[I_F = 25 \, A \text{ with } t_r = 0,5 \, \mu s \text{ at } T_j = 25 \, ^\circ C \]

Recovery time
Recovery voltage

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{fr})</td>
<td>< 0,8 (\mu s)</td>
</tr>
<tr>
<td>(V_{fr})</td>
<td>< 3,5 (V)</td>
</tr>
</tbody>
</table>

Forward output waveform
OPERATING NOTES

Dissipation and heatsink considerations:

a. The various components of junction temperature rise above ambient are illustrated below:

b. The method of using the graph on page 8 is as follows:
Starting with the curve of maximum dissipation as a function of $I_F(AV)$, for a particular current trace horizontally to meet the appropriate form factor; upwards to the operating duty cycle (δ) line; horizontally until the $R_{th\ mb\ -a}$ curve is reached. Finally trace upwards from the T_{amb} scale. The intersection determines the $R_{th\ mb\ -a}$ required.

The heatsink thermal resistance value ($R_{th\ h\ -a}$) can now be calculated from:

$$R_{th\ h\ -a} = R_{th\ mb\ -a} - R_{th\ mb\ -h}$$

Any measurement of heatsink temperature should be made immediately adjacent to the device.

c. The heatsink curves are optimised to allow the junction temperature to run up to 150 °C ($T_{j\ max}$) whilst limiting T_{mb} to 125 °C (or less).
CHOPPER APPLICATIONS

\[\delta = \frac{t_p}{T} \]

\[\delta = 0, 0.25, 0.50, 0.75, 1 \]

\[I_p \]

\[V \]

\[T \]

\[P \ (W) \]

\[P \ (W) \]

\[T_{amb} \ (\degree C) \]

\[T_{mb} \ (\degree C) \]

\[a = \frac{I_F(RMS)}{I_F(AV)} \ per \ diode \]

\[I_F(AV) \ (A) \]

\[a = \frac{I_F(RMS)}{I_F(AV)} \ per \ diode \]

\[P = \text{power excluding switching losses} \]
SWITCHED-MODE APPLICATION

- $P = \text{power excluding switching losses}$
- $a = \frac{I_F(RMS)}{I_F(AV)} \text{ per diode}$
- $b = \text{IF(AV)} \text{ per diode}$

The interrelation between the dissipation (derived from the left hand graph) and the max. allowable ambient temperature.

Mounting method:
- $2a$
- $2b; 2c$
- $2d$

SCAN RECTIFICATION

- $P = \text{power excluding switching losses}$
- $a = \frac{I_F(RMS)}{I_F(AV)} \text{ per diode}$
- $b = \text{IF(AV)} \text{ per diode}$

The interrelation between the dissipation (derived from the left hand graph) and the max. allowable ambient temperature.

Mounting method:
- $2a$
- $2b; 2c$
- $2d$
maximum permissible non-repetitive peak forward current based on sinusoidal currents ($f = 50$ Hz)

Each current pulse is followed by the working reverse voltage

$T_j = 150 \, ^\circ\text{C}$ prior to surge
Nomogram: power loss $\Delta P_{R(AV)}$ due to switching only (to be added to forward and reverse power losses).
BYX71
SERIES

Q_S (μC)

$-\frac{dI}{dt}$ (A/μs)

$T_J = 25 \, ^\circ C$
max. values

$I_F = 10 \, A$

5 A
4 A
3 A
2 A
1 A

Q_S (μC)

$-\frac{dI}{dt}$ (A/μs)

$T_J = 150 \, ^\circ C$
max. values

$I_F = 10 \, A$

5 A
4 A
3 A
2 A
1 A

October 1972